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Polynomial equations with integer coefficients for which only rational solutions are sought.
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..,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2, 3, 4,5, 6, 7, 8, 9, 10,...

2 =1+1
3 =1+1+1

The integers form a group under addition

| 1s a generator for the integers
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Elliptic curve : y* = x> + 17

The rational points form a group under this addition
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Elliptic curve : y* = x> + 17

The rational points form a group under this addition

Find generator(s) and done!
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Elliptic curve : y* = x> + 17

Any point R = nP + mQ
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Elliptic curve : y* = x> + 17

Any point R = nP + mQ

P and Q generate all rational points
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Elliptic curve : y* = x> + 17

Any point R = nP + mQ

P and Q generate all rational points

This curve has rank 2
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Elliptic curves

E:yz—y:x3—x2

No point on this curve generates
infinitely many other points

This curve has rank O
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One point on this curve generates
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Elliptic curves

E:yz—y=x3—x2

No point on this curve generates
infinitely many other points

: This curve has rank O

B — o —

One point on this curve generates

all rational points

This curve has rank 1

Céline Maistret Elliptic curves and BSD May 11,2022




Number theory

1600 BC

Diophantine equations

Elliptic curves 2

E:y —y=x>—x (\Q
./

Céline Maistret Elliptic curves and BSD



Number theory

1600 BC 1572 f\
\ - | 7\7; Tt
./
clectricity 40 WIE
x? + 1=0 y2=x3+ax+b

Diophantine equations

Elliptic curves

E:v —y=x"—x

Rank of E 1s the number of generators

Céline Maistret Elliptic curves and BSD _



Elliptic curves

E:y —y=x’—x

How to compute the rank?

Céline Maistret Elliptic curves and BSD



Elliptic curves

E:y —y=x’—x

How to compute the rank?
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ABOUT PROGRAMS MILLENNIUM PROBLEMS PEOPLE PUBLICATIONS EVENTS EUCLID

Birch and Swinnerton-Dyer Conjecture

Mathematicians have always been fascinated by

the problem of describing all solutions in whole
numbers x,y,z to algebraic equations like

Rules for the Millennium
2,.2_.2
ty"=z Prizes

Euclid gave the complete solution for that equation,

but for more complicated equations this becomes
extremely difficult. Indeed, in 1970 Yu. V. Related Documents:
Matiyasevich showed that Hilbert's tenth problem is unsolvable, i.e., there is no general method for Official Problem

Description

determining when such equations have a solution in whole numbers. But in special cases one can hope to say
something. When the solutions are the points of an abelian variety, the Birch and Swinnerton-Dyer conjecture
asserts that the size of the group of rational points is related to the behavior of an associated zeta function T(s)
near the point s=1. In particular this amazing conjecture asserts that if {(1) is equal to O, then there are an
infinite number of rational points (solutions), and conversely, if {(1) is not equal to O, then there is only a finite
number of such points.

This problemiis: Unsolved

Céline Maistret Diophantine equations, rank and parity March 4, 2020



Try all possible values

..,~10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,...
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Modular arithmetic
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Modular arithmetic

o,1,2,3,4,5,6,78,910,11
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Modular arithmetic

p —_ 3 {03192}
p=5 1{0,1,2,3,4}
p — 11 {0,1,2,3,4,5,69798999 o 1}
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Modulo 3

p=3 10,12} x€{0,1,2},y € {0,1,2]

(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)

6 points modulo 3
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Modulo p

xe{0,12.p—1},ye (0,12.p— 1}

Np points modulo p
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Birch and Swinnerton-Dyer

Consider all p up to X
| B

p<x P
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Birch and Swinnerton-Dyer

Consider all p up to X

N,
H—p ~ C - log(X)Rk
p<x P
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Birch and Swinnerton-Dyer

Consider all p up to X

N
H—p ~ C - log(X)RK
p=X P

Rk 1s the rank of the curve
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1
L(E, s)* =H1_a.p—s+p1—25’ a=p+1—Np
p

L(E,l)” ! T
P Np
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Birch and Swinnerton-Dyer conjecture
(1966):

Let E be an elliptic curve over Q. Then the rank of E(Q)
is equal to the order of vanishing of L(E, s) ats = 1.

E:y —y=x>—x

1
L(E,s)*:” , a=p+1—-Np
l—a.p=5+pl=2s
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ABOUT PROGRAMS MILLENNIUM PROBLEMS PEOPLE PUBLICATIONS EVENTS EUCLID

Birch and Swinnerton-Dyer Conjecture

Mathematicians have always been fascinated by

the problem of describing all solutions in whole
numbers x,y,z to algebraic equations like

Rules for the Millennium
2,.2_.2
ty"=z Prizes

Euclid gave the complete solution for that equation,

but for more complicated equations this becomes
extremely difficult. Indeed, in 1970 Yu. V. Related Documents:
Matiyasevich showed that Hilbert's tenth problem is unsolvable, i.e., there is no general method for Official Problem

Description

determining when such equations have a solution in whole numbers. But in special cases one can hope to say
something. When the solutions are the points of an abelian variety, the Birch and Swinnerton-Dyer conjecture
asserts that the size of the group of rational points is related to the behavior of an associated zeta function T(s)
near the point s=1. In particular this amazing conjecture asserts that if {(1) is equal to O, then there are an
infinite number of rational points (solutions), and conversely, if {(1) is not equal to O, then there is only a finite
number of such points.

This problemiis:
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Ranks of elliptic curves

Mordell’s Theorem (1922):

~ The set of rational points on an elliptic curve E/Q is a finitely generated group:

E(Q) ~ 7™ x T, where |T| < 0.
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Why Elliptic curves ?

Faltings’ Theorem (1983)

Except for linear equations, conic sections and elliptic curves, all other curves
have finitely many rational solutions.
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